Deliver

tomorrow. today.

SOFTIMAGE

S

XSI Scripting Primer

XSI Scripting Primer ... s r e 1
INtroduCtion ... 1
0 = T 1
Syntax of VBScript and JScript ... 2
Arrays and Collections in VBScript and JScriptorvreemccciciieenens 3
D €5 0 11 .4 F- T Lo L= 5
Returning Objects from Commands.............ccccccuuvueeieeeeeeeeeiiciieeeeaaaeae, 7
XSI Object Model..........cccoeiiiiiiiiiiiiiii i 9
Properties and MethOdScouueeeeeeeeeeeeeeeeeeeeee e 9
ODbJECt REFEIENCES ..ot 10
Traversing the Graphcooeeeeeeeeeeee ettt 12
Where to find more information...........ccccciiiiiiii, 15
Introduction

This document provides a quick introduction to scripting inside XSI. There is a
wealth of additional documentation available on this topic, but this can be a quick
start to get you up and running. This covers v3.5 of XSI.

Overview

XSI does not have a proprietary scripting language, instead it supports the
popular scripting languages VBScript, JScript, PerlScript and Python. The
XSI APl is made up of Commands and an Object Model. The Commands are
action-oriented procedure calls, whereas the Object Model is well suited for
traversing and manipulating scene data.

Vi

Deliver S

tomorrow. today.

Using scripts you can add your own Custom Commands, as well as Custom
Events, Custom Operators and Custom Ul. XSl is widely exposed to scripting, in
fact large part of its commands and user interface is written using the SDK. And
because XSI uses ActiveScripting technology it is easy to communicate with
other Windows applications and to integrate XSl scripts into dynamic web
content hosted in Netview.

As users work in XSI their actions are logged as script commands, so it is easy to
optimize repetitive tasks by bundling complex actions into Macro-like custom
commands that can be executed with a single keystroke. XSl includes a built in
script editor and it is possible to debug using the Microsoft Script Debugger, a
free download from http://msdn.microsoft.com/scripting.

Syntax of VBScript and JScript

VBScript and JScript are the two most popular scripting languages so the
examples will be presented in those languages. We will start with a very quick
overview of the syntax of these languages.

VBScript Jscript

this is a coment /1 this is a single-line coment
REM | 'm al so a comment-a t hrowback to Basic /* this is al so

a conment but can be
spread over many lines */

continuing lines needs "_" character /1 continuing lines just like C/ C++

and no senicolons at the end of statenents /1 and statements end with ";"
| ogmessage _ | ogmessage(

"hell o worl d" "hello world");

string concatenation /1 string concatenation
str = "hello" & " world" str = "hello" + "world";

assigning an object to a variable /] assigning an object to a variable
set o = selection o = selection;

decl aring vari abl es /1 declaring and initializing variables
dimx,y var x=0,y=1;

conpari son and assi gnment of nunbers /| comparison and assignment of nunbers
if (Xx=5ANDYy <> 4) then if (x==58&vy!=4) {

z =6 zZ =6 ;

end if }

&

avia

=i
-

b]
fic

| -
|

Deliver

tomorrow. today.

SOFTIMAGE
DN\ o e

e e

VBScript

Jscript

' handling errors
on error resume next

err.description = "fake error"

err.rai se vbQoj ectError + 1000

| ognmessage err.code & ":" & err.description
on error goto O

/1 handling errors

try {
throw new Error(10, "fake error");

catch (e) {
| ogmessage(e. nunber +":"+e. message);
}

' defining a function with a return val ue
function foo2(argl)

foo2 = "hello " & argl
end function

nsg will have the value "hello world"
nsg = foo2("world")

/1 defining a function with a return val ue
function foo(argl) {

return "hello "+ argl
}

/1 msg will have the value "hello world"
var nmsg = foo("world") ;

' subroutines have no return val ues
sub mysub(argl)

LogMessage argl
end sub

Calling a subroutine is special case
call mysub(45)

or (using parentheses here is an error)
nysub 45

/1 JScript functions don't need to return anything
function mysub(argl) {

LogMessage(argl) ;
}

/1 Call nmysub—3Script always needs parentheses
nysub(45)

Both languages work with typeless variables and are interpreted rather than
compiled. This makes them ideal for rapid development. JScript is case-

sensitive, VBScript is not.

Arrays and Collections in VBScript and JScript

VBScript JScript

' accessing arrays /] accessing arrays

dima(9) ' array of size 10 var a = new Array(10); // array of size 10
a(0) =1 a[0] =1,

' get size of 1 dinensional array
count = ubound(a) + 1

/1 get size of array
count = a.length

'

resizing array to size 11
redi m preserve c(10)

/] resizing array
aa = new Array(1, 2, 3);
a = a.concat(a, aa);

' | ooping over array
' you can also use: for each e in a
for i=lbound(a) to ubound(a)
e = a(i)
next

/1 1ooping over array

for (i=0; i < a.length; i++) {
var e = a[il];

}

(A %o

Avid

Deliver

tomorrow. today.

SOFTIMAGE

s 196896

Y/

VBScript JScript

' convert to comma delinmited string /] convert to comma delinmited string
str =join(a, ",") var str = a.join(",");

a =split(str, ",") back to array a =str.split(",");

' VBScript arrays are called " SAFEARRAYS"

/1 JScript uses Array Object, not SAFEARRAY
/1 Some XSI APl return SAFEARRAY but

/1 it can be converted.

/1 (uvprop is a CusterProperty object)

var safearray = uvprop.elenents. array;

var a = new VBArray(safearray).toArray();

'

nmul ti -di nensi onal array
dimb(2,9)

/1 JScript only supports 1 dinensional arrays

' When dealing with lists of objects, XSI often
' uses Collection Objects rather than Safearrays

Get a ParaneterCollection
set oParaneters = oSphere. Paraneters

for each oParaneter in oParaneters
| ognessage oPar anet er. Nanme
next

/1 When dealing with lists of objects, XSI often
/1 uses Collection Objects

/] Get a ParaneterCollection
var oParaneters = oSphere. Paraneters ;

for (i=0;i<oParameters.Count;i++) {
var oParaneter = oParaneters.lten(i) ;
| ognessage(oParaneter.Nane) ;

You can al so construct your own XSl Col |l ection
obj ect using the Create(bject() function
set oRandCol|l = CreateCbject("XSI.Collection")

'

Then you can popul ate it however you want
oRandCol | . Add Rnd()

/1 In JScript, you use the new ActiveX()
/1 constructor instead
var oRandCol| = new ActiveX("XSI.Collection");

/1 or renove all itens
oRandCol | . Cl ear();

' The Sel ection object is a kind of Collection
set myPods = Sel ection(0)
for each p in nyPods
| ognmessage p. Nane
next

I/l Even if there is only one object selected, you
/1 still need to treat it like a Collection
var nmyPod = Sel ection(0);

(A %o

Avid

Deliver S

tomorrow. today.

XSI Commands

Many interactive operations in XSlI, for example changing a value on a Property
Page or clicking on a button, will log a script in the History window of the Script
Editor. It is easy to build your own scripts and custom commands based on a
series of XSI commands.

Some of the most common commands include Get val ue, Set val ue, Creat ePri m
AddPr op, Del et eObj , Appl yOp, Sel ect Obj , and CopyPaste. Each area of XSI (Modeling,
Animation etc) has its own rich set of Commands.

For example, if an object named nycyl! i nder is selected, and the menu item
Animate > Deform > Shape > Store Shape Key is invoked, then the following
line is logged in the Script History:

VBScript:
"I NFO : StoreShapeKey "nycylinder", , siShapelLocal Ref erenceMde

JScript:

/11 NFO : StoreShapeKey("mycylinder", null, siShapelLocal ReferenceMbde);

St or eShapekey is the name of the command that was executed. If you select this
word in the History window and press F1 then the documentation for this
command is displayed. The documentation defines the purpose of the command
and explains each argument.

In this case the first argument defines the object we want to store the shape on.
In the documentation it mentions that the default value for this argument is the
current selection. This means that if we had been sure to select nycyl i nder first,
then we would have been able to call st or eshapekey without specifying the first
argument. This would look like this:

VBScript:

St or eShapeKey , , si ShapelLocal Ref er enceMvde

JScript:

St or eShapeKey(null, null, si ShapelLocal Ref erencehMbde);

Notice how, in VBScript, we leave the argument blank to invoke the command
with default arguments, but in JScript it is necessary to say nul 1 (or).

In the documentation it says that the second argument is the name of the created
key. This is left unspecified so that the default naming scheme is used.

The word si shapeLocal Ref er enceMode Used in the third argument is a constant with
the value 0. Constants are used to make the script code easier to read, and

-9 .4 j | L |
() /T Avio

Deliver S

tomorrow. today.

always start with the characters si . The identical command call, without using
the constant, would look like this:

VBScript:

St or eShapeKey "mycylinder", , 0

JScript:

St or eShapeKey (" mycylinder", null, 0);

Here is an example of how several commands can be grouped together to make

a little script:
VBScript Jscript
Create a grid, nove it and change its col or /]l Create a grid, nove it and change its color
NewScene NewScene() ;
CreatePrim"Gid", "MeshSurface" CreatePrinm("Gid", "MeshSurface");
Translate , 0, 4, 0, _ Translate(null, 0, 4, O,
si Absol ute, siParent, siObj, siY Si Absol ute, siParent, siObj, siY);
Appl yShader "Lanbert" Appl yShader (" Lanbert");
Set Val ue "grid. Material.Lanbert.diffuse.red", 1 Set Val ue("grid. Material.Lanbert.diffuse.red", 1, null);

You can use variables, subroutines, loops and other programming techniques
to generalize a sequence of commands and create your own powerful tools. You
can even communicate with the user during the course of your script, for
example by asking him or her to pick an object.

VBScript JScript
Basi c routine showi ng how to repl ace hardcoded /1 Basic routine showing how to replace hardcoded
obj ect and preset names with arguments /1 object and preset names with argunents
sub CreatePri mWthShader(printype, shadertype) function CreatePrimWthShader(printype, shadertype)
CreatePrimprinmype, "neshsurface" {
Appl yShader shadertype CreatePrin{ printype, "neshsurface") ;
end sub Appl yShader (shadertype) ;
Call our routine tw ce
Creat ePri MW t hShader "Sphere", "Lanbert" /1 Call our function tw ce
Creat ePri MW t hShader "Gid", "Phong" Creat ePri mW t hShader (" Sphere", "Lanbert");

CreatePri mWN t hShader("Grid", "Phong");

Many commands return values which can be stored in variables when you call
them; for example, the I sani mat ed command returns a Boolean value, indicating
whether or not the specified object has animated parameters. You can store the
value directly in a variable like this:

VBScript JScript
Test a sphere and print a nessage indicating /] Test a sphere and print a nmessage indicating
the result /1 the result

&

avia

=i
-

b]
fic

| -
|

1 SOFTIMAGE

e e

tomorrow. today.

VBScript JScript
bFCurves = | sAni mated("sphere", siFcurveSource) bFCurves = | sAni mat ed("sphere", siFcurveSource);
if bFCurves then if (bFCurves) {
| ognmessage " Sphere is ani mat ed" | ogmessage("Sphere is ani mated");
el se } else {
| ogmessage "Sphere is NOT ani mat ed" | ogmessage("Sphere is NOT ani nated");
end if }

Note: Some commands return objects that have been created by the command. Dealing with objects
returned from functions is described in the next section.

Returning Objects from Commands

Many commands return the objects they create or manipulate. For example,
Cr eat ePri mreturns the newly-created object; Appl yop returns a collection of the
newly-created operators; and siFi I ter returns the filtered list of elements.

When we assign the output of a command to a scripting variable, it then refers
(or points) to the value. So if the return value is an object, we could call this an
object reference or object pointer. Object references generally have a
corresponding object (class) type in the Object Model.

Note: Even though variables have no explicit type in VBScript and JScript, you can still test object
references to see what kind of object type they contain using the XSI O assNane function.
Similarly, we can use TypeNane in VBScript or t ypeof in JScript to test what type of data
(boolean, integer, string, etc.) the variable contains.

VBScript:

set oBox = CreatePrin("cube", "meshsurface")
| ognessage oBox & " =" & ClassNanme(oBox)

"I NFO : "cube = X3Dbj ect ™"

JScript:

var oBox = CreatePrin("cube", "neshsurface");
| ognessage(oBox + " =" + Cl assNanme(oBox));

/11 NFO : "cube = X3Dbj ect ™"

The crucial point is to recognize the difference between representing an object by
its string name and an object reference. The trick in VBScript is to remember the
set keyword; without it, you will be saving another type of item in your variable:

Note: JScript does not have this kind of ambiguity because it has no equivalent to the set keyword.

VBScript:

' By forgetting the set keyword, we are actually grabbing a string instead, which will
produce an error when we try to use the C assNane() test

oBox = CreatePrin("cube", "neshsurface")

=3

>
w1

T

Deliver ORaact

- -
tomorrow. today. IB}M-{‘

| ognessage oBox & " = " & TypeNane(oBox)
"INFO : "cube = String"

| ognessage oBox & " =" & ClassNanme(oBox)
"ERROR : "Type mismatch: 'd assNane' - [line 5]"

Since we can get object references returned from commands, the Get val ue
command becomes very interesting, because we can use it to convert string
expressions to a corresponding object:

VBScript:

set oRtn = GetVal ue("Passes. Defaul t_Pass")
| ogmessage oRtn & " =" & ClassNane(oRtn)

"I NFO : "Scene. Passes. Defaul t _Pass = Pass"
JScript:

var oRtn = GetVal ue("Passes.Default_Pass");
| ognessage(oRtn + " =" + C assName(oRtn))

/11 NFO : "Scene. Passes. Def aul t _Pass = Pass"

Once we have an object pointer, we can use any method or property available on
that object (class). This concept is explained in detail in the next section.

O I AT Avic

Deliver SOFTIMAi{E-"

_\ dapuis 1985
tomarrow. today. -"'3}

XSI Object Model

The XSI Object Model exposes the XSI scene as a hierarchy of objects. Each
object represents part of the scene and supports Properties and Methods.
Scripts use the Object Model by getting access to objects in the scene and
calling these methods and properties to get information or change the scene.
Although the XSI object model is built with Object Oriented techniques like
interfaces and inheritance, it is not necessary when writing scripts to have a deep
understanding of these concepts.

Properties and Methods

A property is the scripting terminology for an attribute of an object. If you are
familiar with C++ you can think of these as public member variables. Many
properties allow both read and write access to the underlying value, but some
only allow read access. The val ue and pef aul t properties of the Parameter object
are demonstrated in the following example:

VBScript JScript

OPar aneter. Value = 5 OPar aneter.Value = 5 ;

if (oParaneter.Value <> oParaneter. Default if (oParaneter.Value != oParaneter. Default
) t'he?estore the default val ue) {// restore the default val ue

endiofar anet er. Val ue = oParanet er. Def aul t } oPar anet er. Val ue = oParaneter. Default ;

A method is usually associated with an action that you want to perform on the

object:

VBScript JScript

OSceneRoot . AddLi ght "Li ght Spot" oSceneRoot . AddLi ght (" Li ght Spot");
OPol ygonMesh. AddVer t exCol or oPol ygonMesh. AddVert exCol or () ;

There are many different types of objects in the Object Model and most
correspond directly to the different types of objects used in XSI. For example
Shader, Qperator, Particle, Nul |, Mdel , and Fcurve. These different types of
objects define properties and methods which make sense for the particular
object. For example, the Fcurve object has an addkey method and the Particle
object has a mass property.

However certain properties and methods apply to many objects. For example,
because practically every object has a name of some sort, it is desirable to make

! Iy aAanr ."'II- E = N
Lk-'f{ﬁ el FAVSI Y
i bl] AV

rav.iaig

Deliver SOFTIMAi{E-"

_\ dapuis 1985
tomarrow. today. -"'3}

the Nane property available on each object. These common properties and
methods are organized into interfaces, and each Object Model object will support
(via inheritance) one or more of these interfaces. For example, the SI Obj ect
interface is supported on practically every object, and includes properties like
Nane, Par ent , Type and the method | sEqual To.

Some important interfaces that are supported on many types of objects are:

Interface Name Description

SI bj ect Basic information like Nane, Par ent , Type

X3Dobj ect Corresponds to a 3D object, for exampleaPri m ti ve,
Camera, Nul I , Li ght,orParticl ed oud

Property XSI properties, such as Materials, Custom Properties and

StaticKinematicState are attached to an X3DCbj ect and
establish additional attributes and behavior for the object.
Most of the state of a Pr operty is exposed through its
Parameters. XSI properties should not be confused with the
properties of an object in the programming sense (as
mentioned above).

Scenel tem Supported by objects that can have Pr operty objects
attached to it, of which X3DObj ect is the most common
example.

Par anet er Corresponds to a parameter on an object. Parameters are
often basic types like Strings, Integers and Floats, but can
also be compound types like Color and Vector. For
example the Phong shader has many parameters, including
a color parameter called Anbi ent .

Proj ectlte | Supported by objects that can have Par anet ers. This

m includes both X3DCObj ect s and Properti es.

Object References

Before we can call any of the properties or methods of an XSI object you need to
get a scripting variable that represents that object. As with assigning an object to
the return value of a command (which we saw in the Returning Objects from
Commands section), we could call this an object reference or object pointer.

Note: The object references that you get from return values are actually members of the XSI Object
Model which means that you have access to all the methods and properties available to that object.

! Iy aAanr ."'II- E = N
Lk-'f{ﬁ el FAVSI Y
i bl] AV

rav.iaig

SOFTIMAGE

DN e

Deliver

tomorrow. today.

Again, the crucial point is to recognize the difference between representing an
object by its string name and an object reference. The trick in VBScript is to

remember the set keyword:

VBScript

JScript

sphere is a reference to the sphere object
set sphere = Dictionary. Get Obj ect("sphere")

/1 JScript always behaves as if the VBScript "set"
/] statenent was specified
var sphere = Dictionary. Get Qbject("sphere");

This will print the name of the sphere
| ogmessage sphere. Nanme

/1 This will print the nane of the sphere
| ognmessage(sphere. Nanme);

We can test the type of a variable by using the
VBScri pt TypeName() function, which returns

ei ther the standard data type (eg., String,

Bool ean, Float, etc.) or the XSI object type
(eg., X3Dobject, Canera, Property, etc.)

This will print out "X3Dbject"
| ogmressage TypeNane(sphere)

This will print out "String" because the Nane
property always contains a String data type
| ogmessage TypeNane(sphere. Nane)

/] typeof is simlar but not the same to VBScri pt

/1 TypeName: typeof returns the data type of the

/1 itemif it corresponds to a native JScript type
/1 but it returns "Cbject"” if the itemis an

/1 ActiveX object (ie., any XSI object).

/1 This will print out "Qbject"
| ogmessage(typeof (sphere));

/1 This will print out "String"
| ogmessage(typeof (sphere.Name));

This will also print out "X3DObject"
| ogmressage O assNane(sphere)

/1 1f you need to test which object you have, use
/1 the Application.C assNane() method

/1 This will print out "X3DObject"
| ogmessage(C assNane(sphere));

if "set" is not specified then
sphere becomes the string "sphere"
sphere = Dictionary. Get Obj ect("sphere")

/1 JScript does not have this kind of anbiguity,
/1 since it decides whether the variable will be
/1 an object reference or a string, etc.

This will be a syntax error (not an object)
| ognmessage sphere. Nanme

Note: To help improve the readability of scripts, it is a common convention to prefix object
reference variables with the letter 0. For example, oSpher e =
Di ctionary. Get Obj ect ("sphere").
One convenient, but potentially confusing, aspect of object references is that they
can act as if they are strings. This is because the nane property is the default
property of all Object Model objects so if no property or method is referenced
X8I calls the name property, which returns a string:

=3

>
w1

T

Deliver

tomorrow. today.

SOFTIMAGE

N 5o

i

VBScript

JScript

set oSphere = Dictionary. Get Obj ect("sphere")

This will print out
| ogmessage oSphere

"sphere" ...

because it is equivalent to
| ogmressage oSphere. Nanme

var oSphere = Dictionary. Get Obj ect("sphere");

/1 This will print out
| ogmessage(oSphere);

"sphere" ...

/1 ... because it is equivalent to
| ogmessage(oSphere. Nare) ;

We have shown how an object reference will automatically convert to a string.
The Dictionary.GetObject() method permits going the opposite direction. Once
this conversion process is understood it is possible to use the string name of an
object and object references almost interchangeably.

Traversing the Graph

XSI objects are organized in a hierarchy of objects that corresponds closely to
what is visible in the Scene Explorer. The objects have Parent and Children
relationships between each other. Using these relationships it is possible to
traverse the scene graph. Once you become comfortable with traversing the
scene graph you will be close to mastering the XSI SDK.

VBScript

JScript

Use the dictionary to reach the paraneter
set oParaneter = Dictionary.GetObject(_
"sphere. ki ne. gl obal . posx")

O use the object nodel to traverse to the

par anet er
set oSphere = Dictionary. Get Obj ect("sphere")
set oKinenatics = oSphere. Ki nenati cs
set oQd obal Ki nenatics = oKi nemati cs. @ obal
set oParam = od obal Ki nemati cs. Par anet er s(" posx")

O collapse all these calls together
set oParam = Dictionary. Get Cbj ect("sphere"). _
Ki nemati cs. d obal . Par anet er s(" posx")

/1 Use the dictionary to reach the paraneter
var oParameter = Dictionary. Get Object (

"sphere. ki ne. gl obal . posx");

/1l O use the object npdel to traverse to the
/] paraneter

var oSphere = Dictionary. Get Obj ect("sphere");
var oKi nematics = oSphere. Ki nemati cs;

var od obal Ki nemati cs = oKi nemati cs. @ obal ;
oParam = od obal Ki nemati cs. Paraneters("posx");

/1 O collapse all these calls together
oParam = Dictionary. Get Obj ect ("sphere").
Ki nemati cs. d obal . Par anmet er s(" posx");

In simple cases Di cti onary. Get Obj ect (as well as the CGet Val ue and

Set Val ue commands) are easier to use and require less typing. However they
require that you know exactly the names of the specific object you want to
access. The object model is very good for dealing with scenes with unknown or
dynamic content and hence powerful for writing flexible tools. It can also be

significantly faster.

Practically all relationships between objects in the scene graph can all be
generalized as either a parent or child relationship. When considering the Scene

SOFTIMAGE
D\ e

Deliver

tomorrow. today.

Explorer we would say that the nodes nested underneath a particular node are its
children, and the node immediately above it is its parent.

Reaching the parent of a node is easy, because practically every object supports
the SI Qbj ect . Par ent property. Some objects may actually have multiple
parents, such as a shared material, in which case the same object appears at
multiple places in the scene explorer and in the graph. In this case all the
"parents" can be reached via the Pr oj ect | t em Oaner s property. Because
there can be more than one this property returns a collection.

Reaching children nodes is also easy, but the property to access depends on
the type of the child. For example, to get the parameters of a Pr oj ect | t emwe
access the Proj ect | t em Par anet er s property, which returns a

Par anmet er Col | ecti on.

The following table shows some of the Object Model properties which are used to
reach children:

Object.Property

Type of Child

Projectltem Paraneters

Par amet er

X3Dobj ect . Chi |l dren

X3Dbj ect s nested under a X3DObject

X3Dobj ect . Model s

Mmdel s nested under a X3DObject

Scenel t em Properties

Properties

Primtive. ConstructionHi story

Oper at or s acting on the Primitive

Geonetry. d usters

Clusters

X3Dobj ect. ActivePrimtive

Primtive that creates the shape of the
X3DObiject

Scenel tem Materi al

Mat eri al

Mat eri al . Shader s

shader s connected directly to the Material

Particl eCl oud. Particles

Particles

Par anet er . Sour ce

Fcurve, Shader or other source driving a
parameter’s value

Pol ygonMesh. Verti ces

Vertices

The following examples show some of these properties in use:

VBScript

Look for property objects under the Scene Root
for each oProperty in ActiveSceneRoot. Properties
| ogmessage "Found Property: " _

JScript

/1 Look for property objects under the Scene Root
OoEnum = new Enuner at or (
Act i veSceneRoot . Properties

;3 V- | P
h’i’?ﬂ (al) nvinrt

Deliver

tomorrow. today.

SOFTIMAGE

s 196896

e S,

(=

VBScript

JScript

& oProperty. Nane
next

)
for (;!oEnum atEnd(); oEnum nmoveNext ())

{

| ognessage("Found Property:

+ oEnumiten().Name);

' Find point clusters on a geonetry

set oSphere = Sel ection(0)

set oClusterCollection =

oSphere. ActivePrimtive. Geonetry. Clusters

for each oCluster in oC usterCollection
if (oCluster.Type = "pnt") then
| ogmessage "Found a point cluster" _
& " with size " & _
oCl uster. El ement s. Count
end if
next

/1 Find point clusters on a geonetry

var oSphere = Sel ection(0);

var oCl usterCollection =

oSphere. ActivePrimtive. Geonetry. Clusters

for(i =0 ; i < oCusterCollection.Count
var oCluster =
if (oCluster. Type

"pnt”)

| ognessage("Found a point cluster

with size

oCl uster. El enents. Count) ;

oClusterCollection.lten(i) ;

poirr) |

+

2 s

Avid

1 SOFTIMAGE
2 - e

tomorrow. today.

Where to find more information

The SDK White Paper is a good introduction to the capabilities and features of
the XSI SDK.

XSI ships with extensive SDK documentation. This includes:
» the Scripting User Guide

= the Scripting Reference Guide

» the Plug-in Integration Guide

For examples and tutorials check out http://www.softimage.com/Education/Xsi/
and http://www.softimage.com/xsinet.

There is also a large online community with examples and discussions available
from sites like:

= http://www.xsibase.com/

= http://www.highend3d.com/

= http://www.edharriss.com/

= http://www.xsifiles.com/

Softimage also offers SDK Support contracts, including a members-only forum,
extensive library of examples and technical support. For more information please
visit the Partners section on www.softimage.com.

To learn more about the Object Model be sure to try out the Info OM Net View
page that is part of XSI Net.

For information about the scripting languages there is a great deal of free
information available on the internet. Here are a few sites to get you started:
= http://msdn.microsoft.com/scripting

http://www.devguru.com

http://www.winscripter.com/

http://www.win32scripting.com/

http://www.activestate.com/

http://www.perl.org/

http://www.perl.com/

http://www.python.org/

2 Avid

