
XSI Scripting Primer

XSI Scripting Primer ..1

Introduction ..1

Overview ...1

Syntax of VBScript and JScript ..2

Arrays and Collections in VBScript and JScript3

XSI Commands...5

Returning Objects from Commands ..7

XSI Object Model..9

Properties and Methods ..9

Object References ..10

Traversing the Graph ..12

Where to find more information..15

Introduction
This document provides a quick introduction to scripting inside XSI. There is a
wealth of additional documentation available on this topic, but this can be a quick
start to get you up and running. This covers v3.5 of XSI.

Overview
XSI does not have a proprietary scripting language, instead it supports the
popular scripting languages VBScript, JScript, PerlScript and Python. The
XSI API is made up of Commands and an Object Model. The Commands are
action-oriented procedure calls, whereas the Object Model is well suited for
traversing and manipulating scene data.

Using scripts you can add your own Custom Commands, as well as Custom
Events, Custom Operators and Custom UI. XSI is widely exposed to scripting, in
fact large part of its commands and user interface is written using the SDK. And
because XSI uses ActiveScripting technology it is easy to communicate with
other Windows applications and to integrate XSI scripts into dynamic web
content hosted in Netview.

As users work in XSI their actions are logged as script commands, so it is easy to
optimize repetitive tasks by bundling complex actions into Macro-like custom
commands that can be executed with a single keystroke. XSI includes a built in
script editor and it is possible to debug using the Microsoft Script Debugger, a
free download from http://msdn.microsoft.com/scripting.

Syntax of VBScript and JScript
VBScript and JScript are the two most popular scripting languages so the
examples will be presented in those languages. We will start with a very quick
overview of the syntax of these languages.

VBScript Jscript

' this is a comment

REM I'm also a comment–a throwback to Basic

// this is a single-line comment

/* this is also
 a comment but can be
 spread over many lines */

' continuing lines needs "_" character
' and no semicolons at the end of statements
logmessage _
 "hello world"

// continuing lines just like C/C++
// and statements end with ";"
logmessage(
 "hello world");

' string concatenation
str = "hello" & " world"

// string concatenation
str = "hello" + "world";

' assigning an object to a variable
set o = selection

// assigning an object to a variable
o = selection;

' declaring variables
dim x,y

// declaring and initializing variables
var x=0,y=1;

' comparison and assignment of numbers
if (x = 5 AND y <> 4) then
 z = 6
end if

// comparison and assignment of numbers
if (x == 5 && y != 4) {
 z = 6 ;
}

VBScript Jscript

' handling errors
on error resume next
 err.description = "fake error"
 err.raise vbObjectError + 1000
 logmessage err.code & ":" & err.description
on error goto 0

// handling errors
try {
 throw new Error(10, "fake error");
}
catch (e) {
 logmessage(e.number +":"+e.message);
}

' defining a function with a return value
function foo2(arg1)
 foo2 = "hello " & arg1
end function

' msg will have the value "hello world"
msg = foo2("world")

// defining a function with a return value
function foo(arg1) {
 return "hello "+ arg1;
}

// msg will have the value "hello world"
var msg = foo("world") ;

' subroutines have no return values
sub mysub(arg1)
 LogMessage arg1
end sub

' Calling a subroutine is special case
call mysub(45)

' or (using parentheses here is an error)
mysub 45

// JScript functions don't need to return anything
function mysub(arg1) {
 LogMessage(arg1) ;
}

// Call mysub—JScript always needs parentheses
mysub(45);

Both languages work with typeless variables and are interpreted rather than
compiled. This makes them ideal for rapid development. JScript is case-
sensitive, VBScript is not.

Arrays and Collections in VBScript and JScript
VBScript JScript

' accessing arrays
dim a(9) ' array of size 10
a(0) = 1

// accessing arrays
var a = new Array(10); // array of size 10
a[0] = 1;

' get size of 1 dimensional array
count = ubound(a) + 1

// get size of array
count = a.length;

' resizing array to size 11
redim preserve c(10)

// resizing array
aa = new Array(1,2,3);
a = a.concat(a, aa);

' looping over array
' you can also use: for each e in a
for i=lbound(a) to ubound(a)
 e = a(i)
next

// looping over array
for (i=0; i < a.length; i++) {
 var e = a[i];
}

VBScript JScript
' convert to comma delimited string
str = join(a, ",")
a = split(str, ",") ' back to array

// convert to comma delimited string
var str = a.join(",");
a = str.split(",");

' VBScript arrays are called "SAFEARRAYS"

// JScript uses Array Object, not SAFEARRAY
// Some XSI API return SAFEARRAY but
// it can be converted.
// (uvprop is a ClusterProperty object)
var safearray = uvprop.elements.array;
var a = new VBArray(safearray).toArray();

' multi-dimensional array
dim b(2,9)

// JScript only supports 1 dimensional arrays

' When dealing with lists of objects, XSI often
' uses Collection Objects rather than Safearrays

' Get a ParameterCollection
set oParameters = oSphere.Parameters

for each oParameter in oParameters
 logmessage oParameter.Name
next

// When dealing with lists of objects, XSI often
// uses Collection Objects

// Get a ParameterCollection
var oParameters = oSphere.Parameters ;

for (i=0;i<oParameters.Count;i++) {
 var oParameter = oParameters.Item(i) ;
 logmessage(oParameter.Name) ;
}

' You can also construct your own XSICollection
' object using the CreateObject() function
set oRandColl = CreateObject("XSI.Collection")

' Then you can populate it however you want
oRandColl.Add Rnd()

// In JScript, you use the new ActiveX()
// constructor instead
var oRandColl = new ActiveX("XSI.Collection");

// or remove all items
oRandColl.Clear();

' The Selection object is a kind of Collection
set myPods = Selection(0)
for each p in myPods
 logmessage p.Name
next

// Even if there is only one object selected, you
// still need to treat it like a Collection
var myPod = Selection(0);

XSI Commands
Many interactive operations in XSI, for example changing a value on a Property
Page or clicking on a button, will log a script in the History window of the Script
Editor. It is easy to build your own scripts and custom commands based on a
series of XSI commands.

Some of the most common commands include GetValue, SetValue, CreatePrim,
AddProp, DeleteObj, ApplyOp, SelectObj, and CopyPaste. Each area of XSI (Modeling,
Animation etc) has its own rich set of Commands.

For example, if an object named mycylinder is selected, and the menu item
Animate > Deform > Shape > Store Shape Key is invoked, then the following
line is logged in the Script History:

VBScript:
'INFO : StoreShapeKey "mycylinder", , siShapeLocalReferenceMode

JScript:
//INFO : StoreShapeKey("mycylinder", null, siShapeLocalReferenceMode);

StoreShapeKey is the name of the command that was executed. If you select this
word in the History window and press F1 then the documentation for this
command is displayed. The documentation defines the purpose of the command
and explains each argument.

In this case the first argument defines the object we want to store the shape on.
In the documentation it mentions that the default value for this argument is the
current selection. This means that if we had been sure to select mycylinder first,
then we would have been able to call StoreShapeKey without specifying the first
argument. This would look like this:

VBScript:
StoreShapeKey , , siShapeLocalReferenceMode

JScript:
StoreShapeKey(null, null, siShapeLocalReferenceMode);

Notice how, in VBScript, we leave the argument blank to invoke the command
with default arguments, but in JScript it is necessary to say null (or "").

In the documentation it says that the second argument is the name of the created
key. This is left unspecified so that the default naming scheme is used.

The word siShapeLocalReferenceMode used in the third argument is a constant with
the value 0. Constants are used to make the script code easier to read, and

always start with the characters si. The identical command call, without using
the constant, would look like this:

VBScript:
StoreShapeKey "mycylinder", , 0

JScript:
StoreShapeKey("mycylinder", null, 0);

Here is an example of how several commands can be grouped together to make
a little script:

VBScript Jscript

' Create a grid, move it and change its color
NewScene
CreatePrim "Grid", "MeshSurface"
Translate , 0, 4, 0, _
 siAbsolute, siParent, siObj, siY
ApplyShader "Lambert"
SetValue "grid.Material.Lambert.diffuse.red", 1

// Create a grid, move it and change its color
NewScene();
CreatePrim("Grid", "MeshSurface");
Translate(null, 0, 4, 0,
 SiAbsolute, siParent, siObj, siY);
ApplyShader("Lambert");
SetValue("grid.Material.Lambert.diffuse.red", 1, null);

You can use variables, subroutines, loops and other programming techniques
to generalize a sequence of commands and create your own powerful tools. You
can even communicate with the user during the course of your script, for
example by asking him or her to pick an object.

VBScript JScript

' Basic routine showing how to replace hardcoded
' object and preset names with arguments

sub CreatePrimWithShader(primtype, shadertype)
 CreatePrim primtype, "meshsurface"
 ApplyShader shadertype
end sub

' Call our routine twice
CreatePrimWithShader "Sphere", "Lambert"
CreatePrimWithShader "Grid", "Phong"

// Basic routine showing how to replace hardcoded
// object and preset names with arguments

function CreatePrimWithShader(primtype, shadertype)
{
 CreatePrim(primtype, "meshsurface") ;
 ApplyShader(shadertype) ;
}

// Call our function twice
CreatePrimWithShader("Sphere", "Lambert");
CreatePrimWithShader("Grid", "Phong");

Many commands return values which can be stored in variables when you call
them; for example, the IsAnimated command returns a Boolean value, indicating
whether or not the specified object has animated parameters. You can store the
value directly in a variable like this:

VBScript JScript

' Test a sphere and print a message indicating
' the result

// Test a sphere and print a message indicating
// the result

VBScript JScript

bFCurves = IsAnimated("sphere", siFcurveSource)

if bFCurves then
 logmessage "Sphere is animated"
else
 logmessage "Sphere is NOT animated"
end if

bFCurves = IsAnimated("sphere", siFcurveSource);

if (bFCurves) {
 logmessage("Sphere is animated");
} else {
 logmessage("Sphere is NOT animated");
}

Note: Some commands return objects that have been created by the command. Dealing with objects

returned from functions is described in the next section.

Returning Objects from Commands
Many commands return the objects they create or manipulate. For example,
CreatePrim returns the newly-created object; ApplyOp returns a collection of the
newly-created operators; and SIFilter returns the filtered list of elements.

When we assign the output of a command to a scripting variable, it then refers
(or points) to the value. So if the return value is an object, we could call this an
object reference or object pointer. Object references generally have a
corresponding object (class) type in the Object Model.

Note: Even though variables have no explicit type in VBScript and JScript, you can still test object

references to see what kind of object type they contain using the XSI ClassName function.
Similarly, we can use TypeName in VBScript or typeof in JScript to test what type of data
(boolean, integer, string, etc.) the variable contains.

VBScript:
set oBox = CreatePrim("cube", "meshsurface")
logmessage oBox & " = " & ClassName(oBox)

'INFO : "cube = X3DObject"

JScript:
var oBox = CreatePrim("cube", "meshsurface");
logmessage(oBox + " = " + ClassName(oBox));

//INFO : "cube = X3DObject"

The crucial point is to recognize the difference between representing an object by
its string name and an object reference. The trick in VBScript is to remember the
set keyword; without it, you will be saving another type of item in your variable:
Note: JScript does not have this kind of ambiguity because it has no equivalent to the set keyword.

VBScript:
' By forgetting the set keyword, we are actually grabbing a string instead, which will
' produce an error when we try to use the ClassName() test
oBox = CreatePrim("cube", "meshsurface")

logmessage oBox & " = " & TypeName(oBox)
'INFO : "cube = String"

logmessage oBox & " = " & ClassName(oBox)
'ERROR : "Type mismatch: 'ClassName' - [line 5]"

Since we can get object references returned from commands, the GetValue
command becomes very interesting, because we can use it to convert string
expressions to a corresponding object:
VBScript:
set oRtn = GetValue("Passes.Default_Pass")
logmessage oRtn & " = " & ClassName(oRtn)

'INFO : "Scene.Passes.Default_Pass = Pass"

JScript:
var oRtn = GetValue("Passes.Default_Pass");
logmessage(oRtn + " = " + ClassName(oRtn))

//INFO : "Scene.Passes.Default_Pass = Pass"

Once we have an object pointer, we can use any method or property available on
that object (class). This concept is explained in detail in the next section.

XSI Object Model
The XSI Object Model exposes the XSI scene as a hierarchy of objects. Each
object represents part of the scene and supports Properties and Methods.
Scripts use the Object Model by getting access to objects in the scene and
calling these methods and properties to get information or change the scene.
Although the XSI object model is built with Object Oriented techniques like
interfaces and inheritance, it is not necessary when writing scripts to have a deep
understanding of these concepts.

Properties and Methods
A property is the scripting terminology for an attribute of an object. If you are
familiar with C++ you can think of these as public member variables. Many
properties allow both read and write access to the underlying value, but some
only allow read access. The Value and Default properties of the Parameter object
are demonstrated in the following example:

VBScript JScript

OParameter.Value = 5

if (oParameter.Value <> oParameter.Default
) then
 ' restore the default value
 oParameter.Value = oParameter.Default
endif

OParameter.Value = 5 ;

if (oParameter.Value != oParameter.Default
) {
 // restore the default value
 oParameter.Value = oParameter.Default ;
}

A method is usually associated with an action that you want to perform on the
object:

VBScript JScript

OSceneRoot.AddLight "LightSpot"
OPolygonMesh.AddVertexColor

oSceneRoot.AddLight("LightSpot");
oPolygonMesh.AddVertexColor();

There are many different types of objects in the Object Model and most
correspond directly to the different types of objects used in XSI. For example
Shader, Operator, Particle, Null, Model, and Fcurve. These different types of
objects define properties and methods which make sense for the particular
object. For example, the Fcurve object has an AddKey method and the Particle
object has a Mass property.

However certain properties and methods apply to many objects. For example,
because practically every object has a name of some sort, it is desirable to make

the Name property available on each object. These common properties and
methods are organized into interfaces, and each Object Model object will support
(via inheritance) one or more of these interfaces. For example, the SIObject
interface is supported on practically every object, and includes properties like
Name, Parent, Type and the method IsEqualTo.
Some important interfaces that are supported on many types of objects are:

Interface Name Description

SIObject Basic information like Name, Parent, Type

X3Dobject Corresponds to a 3D object, for example a Primitive,
Camera, Null, Light, or ParticleCloud

Property XSI properties, such as Materials, Custom Properties and
StaticKinematicState are attached to an X3DObject and
establish additional attributes and behavior for the object.
Most of the state of a Property is exposed through its
Parameters. XSI properties should not be confused with the
properties of an object in the programming sense (as
mentioned above).

SceneItem Supported by objects that can have Property objects
attached to it, of which X3DObject is the most common
example.

Parameter Corresponds to a parameter on an object. Parameters are
often basic types like Strings, Integers and Floats, but can
also be compound types like Color and Vector. For
example the Phong shader has many parameters, including
a color parameter called Ambient.

ProjectIte
m

Supported by objects that can have Parameters. This
includes both X3DObjects and Properties.

Object References
Before we can call any of the properties or methods of an XSI object you need to
get a scripting variable that represents that object. As with assigning an object to
the return value of a command (which we saw in the Returning Objects from
Commands section), we could call this an object reference or object pointer.

Note: The object references that you get from return values are actually members of the XSI Object

Model which means that you have access to all the methods and properties available to that object.

Again, the crucial point is to recognize the difference between representing an
object by its string name and an object reference. The trick in VBScript is to
remember the set keyword:

VBScript JScript

' sphere is a reference to the sphere object
set sphere = Dictionary.GetObject("sphere")

// JScript always behaves as if the VBScript "set"
// statement was specified
var sphere = Dictionary.GetObject("sphere");

' This will print the name of the sphere
logmessage sphere.Name

// This will print the name of the sphere
logmessage(sphere.Name);

' We can test the type of a variable by using the
' VBScript TypeName() function, which returns
' either the standard data type (eg., String,
' Boolean, Float, etc.) or the XSI object type
' (eg., X3Dobject, Camera, Property, etc.)

' This will print out "X3DObject"
logmessage TypeName(sphere)

' This will print out "String" because the Name
' property always contains a String data type
logmessage TypeName(sphere.Name)

// typeof is similar but not the same to VBScript
// TypeName: typeof returns the data type of the
// item if it corresponds to a native JScript type
// but it returns "Object" if the item is an
// ActiveX object (ie., any XSI object).

// This will print out "Object"
logmessage(typeof(sphere));

// This will print out "String"
logmessage(typeof(sphere.Name));

' This will also print out "X3DObject"
logmessage ClassName(sphere)

// If you need to test which object you have, use
// the Application.ClassName() method

// This will print out "X3DObject"
logmessage(ClassName(sphere));

' if "set" is not specified then
' sphere becomes the string "sphere"
sphere = Dictionary.GetObject("sphere")

' This will be a syntax error (not an object)
logmessage sphere.Name

// JScript does not have this kind of ambiguity,
// since it decides whether the variable will be
// an object reference or a string, etc.

Note: To help improve the readability of scripts, it is a common convention to prefix object

reference variables with the letter o. For example, oSphere =
Dictionary.GetObject("sphere").

One convenient, but potentially confusing, aspect of object references is that they
can act as if they are strings. This is because the Name property is the default
property of all Object Model objects so if no property or method is referenced
XSI calls the Name property, which returns a string:

VBScript JScript

set oSphere = Dictionary.GetObject("sphere")

' This will print out "sphere" ...
logmessage oSphere

' ... because it is equivalent to
logmessage oSphere.Name

var oSphere = Dictionary.GetObject("sphere");

// This will print out "sphere" ...
logmessage(oSphere);

// ... because it is equivalent to
logmessage(oSphere.Name);

We have shown how an object reference will automatically convert to a string.
The Dictionary.GetObject() method permits going the opposite direction. Once
this conversion process is understood it is possible to use the string name of an
object and object references almost interchangeably.

Traversing the Graph
XSI objects are organized in a hierarchy of objects that corresponds closely to
what is visible in the Scene Explorer. The objects have Parent and Children
relationships between each other. Using these relationships it is possible to
traverse the scene graph. Once you become comfortable with traversing the
scene graph you will be close to mastering the XSI SDK.

VBScript JScript

' Use the dictionary to reach the parameter
set oParameter = Dictionary.GetObject(_
 "sphere.kine.global.posx")

' Or use the object model to traverse to the
' parameter
set oSphere = Dictionary.GetObject("sphere")
set oKinematics = oSphere.Kinematics
set oGlobalKinematics = oKinematics.Global
set oParam = oGlobalKinematics.Parameters("posx")

' Or collapse all these calls together
set oParam = Dictionary.GetObject("sphere"). _
 Kinematics.Global.Parameters("posx")

// Use the dictionary to reach the parameter
var oParameter = Dictionary.GetObject(
 "sphere.kine.global.posx");

// Or use the object model to traverse to the
// parameter
var oSphere = Dictionary.GetObject("sphere");
var oKinematics = oSphere.Kinematics;
var oGlobalKinematics = oKinematics.Global;
oParam = oGlobalKinematics.Parameters("posx");

// Or collapse all these calls together
oParam = Dictionary.GetObject("sphere").
 Kinematics.Global.Parameters("posx");

In simple cases Dictionary.GetObject (as well as the GetValue and
SetValue commands) are easier to use and require less typing. However they
require that you know exactly the names of the specific object you want to
access. The object model is very good for dealing with scenes with unknown or
dynamic content and hence powerful for writing flexible tools. It can also be
significantly faster.

Practically all relationships between objects in the scene graph can all be
generalized as either a parent or child relationship. When considering the Scene

Explorer we would say that the nodes nested underneath a particular node are its
children, and the node immediately above it is its parent.

Reaching the parent of a node is easy, because practically every object supports
the SIObject.Parent property. Some objects may actually have multiple
parents, such as a shared material, in which case the same object appears at
multiple places in the scene explorer and in the graph. In this case all the
"parents" can be reached via the ProjectItem.Owners property. Because
there can be more than one this property returns a collection.

Reaching children nodes is also easy, but the property to access depends on
the type of the child. For example, to get the parameters of a ProjectItem we
access the ProjectItem.Parameters property, which returns a
ParameterCollection.

The following table shows some of the Object Model properties which are used to
reach children:

Object.Property Type of Child

ProjectItem.Parameters Parameter

X3Dobject.Children X3DObjects nested under a X3DObject
X3Dobject.Models Models nested under a X3DObject
SceneItem.Properties Properties

Primitive.ConstructionHistory Operators acting on the Primitive
Geometry.Clusters Clusters

X3Dobject.ActivePrimitive Primitive that creates the shape of the
X3DObject

SceneItem.Material Material

Material.Shaders Shaders connected directly to the Material
ParticleCloud.Particles Particles

Parameter.Source FCurve, Shader or other source driving a
parameter’s value

PolygonMesh.Vertices Vertices

The following examples show some of these properties in use:

VBScript JScript

' Look for property objects under the Scene Root
for each oProperty in ActiveSceneRoot.Properties
 logmessage "Found Property: " _

// Look for property objects under the Scene Root
oEnum = new Enumerator(
 ActiveSceneRoot.Properties

VBScript JScript
 & oProperty.Name
next

);
for (;!oEnum.atEnd();oEnum.moveNext())
{
 logmessage("Found Property: "
 + oEnum.item().Name);
}

' Find point clusters on a geometry
set oSphere = Selection(0)
set oClusterCollection =
oSphere.ActivePrimitive.Geometry.Clusters
for each oCluster in oClusterCollection
 if (oCluster.Type = "pnt") then
 logmessage "Found a point cluster" _
 & " with size " & _
 oCluster.Elements.Count
 end if
next

// Find point clusters on a geometry
var oSphere = Selection(0);
var oClusterCollection =
oSphere.ActivePrimitive.Geometry.Clusters
for(i = 0 ; i < oClusterCollection.Count ; i++) {
 var oCluster = oClusterCollection.Item(i) ;
 if (oCluster.Type == "pnt"){
 logmessage("Found a point cluster
 with size " +
 oCluster.Elements.Count) ;
 }
}

Where to find more information
The SDK White Paper is a good introduction to the capabilities and features of
the XSI SDK.

XSI ships with extensive SDK documentation. This includes:
� the Scripting User Guide
� the Scripting Reference Guide
� the Plug-in Integration Guide

For examples and tutorials check out http://www.softimage.com/Education/Xsi/
and http://www.softimage.com/xsinet.

There is also a large online community with examples and discussions available
from sites like:
� http://www.xsibase.com/
� http://www.highend3d.com/
� http://www.edharriss.com/
� http://www.xsifiles.com/

Softimage also offers SDK Support contracts, including a members-only forum,
extensive library of examples and technical support. For more information please
visit the Partners section on www.softimage.com.

To learn more about the Object Model be sure to try out the Info OM Net View
page that is part of XSI Net.

For information about the scripting languages there is a great deal of free
information available on the internet. Here are a few sites to get you started:
� http://msdn.microsoft.com/scripting
� http://www.devguru.com
� http://www.winscripter.com/
� http://www.win32scripting.com/
� http://www.activestate.com/
� http://www.perl.org/
� http://www.perl.com/
� http://www.python.org/

